国产日韩欧美在线看_亚洲精品婷婷_日本一区二区三区四区在线视频_51午夜精品国产

工業除濕機廠家專業提供工業除濕機,家用除濕機,商用除濕機等產品,歡迎來電咨詢定制。 公司簡介| 研發團隊| 網站地圖| xml地圖
工業·商用除濕設備生產商

工業除濕機·商用除濕機·恒溫恒濕機·非標定制

全國咨詢熱線133-6050-3273
您的位置:新聞動態 > 常見問題
再生式除濕換熱器除濕的研究現狀及存在的問題

再生式除濕換熱器除濕的研究現狀及存在的問題

作者:CEO 時間:2022-08-30

信息摘要:目前常用的干燥劑除濕技術主要包括固體除濕和液體除濕。固體除濕是利用多孔介質的毛細作用將空氣中的水分吸附到干燥劑上,目前國內外主要研究兩類固體吸附式除濕裝置:一類是固定床式除濕器,包括交叉冷卻式除濕器;另一類是旋轉式除濕器,包括平行通道式除濕轉輪和蜂窩狀除濕轉輪。液體干燥劑除濕以具有吸濕性能的鹽溶液(

再生式除濕換熱器除濕的研究現狀及存在的問題

(再生式除濕換熱器除濕的研究現狀及存在的問題)

  目前常用的干燥劑除濕技術主要包括固體除濕和液體除濕。固體除濕是利用多孔介質的毛細作用將空氣中的水分吸附到干燥劑上,目前國內外主要研究兩類固體吸附式除濕裝置:一類是固定床式除濕器,包括交叉冷卻式除濕器;另一類是旋轉式除濕器,包括平行通道式除濕轉輪和蜂窩狀除濕轉輪。液體干燥劑除濕以具有吸濕性能的鹽溶液(如溴化鋰、氯化鋰、氯化鈣等)作為工作介質,常溫情況下一定濃度的溶液其表面蒸汽壓低于空氣中的水蒸汽分壓力,實現水分由空氣向溶液轉移來達到除濕目的。

  相對于傳統的冷卻除濕技術,固體干燥劑除濕設備簡單,在低濕下仍能有良好的除濕效果,在潛熱負荷大于顯熱負荷的地區很實用;還能夠將空氣處理到較低的露點,而且將干燥劑除濕技術與冷盤管結合起來可以實現溫濕度單獨控制,耗電少,再生熱選擇面廣,能夠利用太陽能、廢熱等低品位熱能;此外,沒有氟利昂的排放,環境友好型,干燥劑還能除去空氣中污染物而能保證室內空氣品質。

  最原始的固體除濕是在密封的容器內放置干燥劑進行除濕,如將干燥劑置于食品袋和將臭丸放在衣柜里等。后來出現了將固體吸附劑(如硅膠、分子篩、活性氧化鋁、沸石等)作為固定層填充于塔(筒)內進行空氣除濕,該除濕方式為間歇方式,需要定期進行脫附處理,而且無論是操作還是控制都不方便。與此同時出現了流化床除濕器,但是其動力消耗較大。為了能連續除濕,出現了兩塔并用的除濕器:一塔用于吸附空氣水分,另一塔用于再生,經過一定時間后將塔轉換,使吸濕與再生互換,如此可連續除濕。最初的兩塔并用除濕都是在常壓下進行,脫附采用的是熱脫附。為了進一步提高除濕的效率和降低脫附所需能量,出現了非加熱再生的變壓吸附除濕器。

  S.Singh等床的系統性能與運行參數、工況等有關。對多層式除濕器干燥劑的再生做了研究,分析了參數如再生空氣溫度(42℃-72℃)、經過固定床的空氣流速(0.175-0.55m/s)和除濕器層數(2~4)對干燥劑再生時間的影響,得到再生時間隨著暫停時間的增加而減少。在所研究的固定床空氣流速和層數范圍內,干燥劑的水分減少比例隨著再生溫度的增加從42.8%下降到15%.此外,在空氣流速為0.175m/s和再生溫度為52℃時的所需的能耗最小。馮圣洪等人對硅膠固定式吸附床的不同形狀的通道結構進行了實驗研究,其中包括:直通道、彎曲通道、螺旋通道。研究得到,螺旋通道在相同流速的條件下吸附/解吸效果而且再生速率高,有潛在的研究價值。該固定床除濕方式為間歇方式,需要定期進行再生處理,而且無論是操作還是控制都不方便。

  由于最初的固定床除濕器只有處理空氣通道,沒有冷卻氣流通道,床的兩面均有干燥劑,這就會有吸附熱易積累、難排放而引起床層溫度升高導致除濕效率降低的缺點,后逐漸被具有冷卻氣流通道的床層所取代。具有惰性填充物的冷卻床的惰性填充物和冷氣流可以同時帶走吸附熱,從而降低了床層的溫度,提高了除濕效率也提高系統的熱力性能。后來又出現了具有冷卻氣流通道的錯流床層結構。

  一種新型內冷卻緊湊式固體干燥劑除濕器,并建立了數學模型,采用數值模擬的方法對該除濕器進行了再生和除濕周期性切換的性能動態模,該除濕器通過在次邊通以氣流對主邊流道進行冷卻,能夠有效帶走吸濕過程產生的吸附熱。提出了交叉冷卻式固定床,該固定床具有交叉式平行冷卻管道,冷卻管道交叉地布置在每個除濕管道中,管道內通過冷水或冷空氣,在吸附的過程中冷卻干燥劑。

  對叉流式除濕器性能進行了分析研究,發現該叉流式除濕換熱器的COP要比單獨使用除濕機時高出53%,達到1.2,而所需的蒸發溫度也從單獨的除濕機時的11.5℃提高到要高19.3℃。此類除濕器進一步提高了床層的除濕效率。

  為了保證能連續除濕,又出現了轉輪除濕機轉輪除濕之所以備受青睞,是由于其可連續運轉,濕度控制容易,依轉盤直徑大小可制成各種不同風量的機型,維護容易而且可以充分利用工業余熱、廢熱、天然氣、太陽能等低品位熱能,能迅速、簡便有效地降低空氣中的濕度,卓有成效地解決常溫低濕、低溫低濕等用其他制冷方法無法解決的除濕問題,特別是配套組合處理后空氣露點可達到-40℃~-60℃。

  但固體轉輪除濕機結構復雜,而且除濕過程流體溫升較大,一般為30℃;轉輪旋轉結構容易出現漏風現象,特別是氯化鋰除濕轉輪轉盤具有容易出現過飽和現象而致使吸濕劑流出,或吸水不平衡致使轉盤轉動時產生擺動的缺點;分子篩轉輪除濕機不僅價格較硅膠貴,而且要求轉輪再生空氣溫度高。

  為了研究吸附熱導致除濕過程偏離理想等溫除濕而影響除濕性能的問題。葛天舒等提出了理想的轉輪式無限多級除濕空調的概念,其處理過程如圖1-2所示,理論上證明此理想流程具有最小的不可逆損失、系統的驅動熱源溫度而且系統的除濕量,闡明實現該過程對于解決吸附熱對除濕性能影響具有重要作用。

  轉輪的系統性能與參數如再生風速、處理風速、轉輪轉速、再生溫度以及再生風和處理風的工況等有關。如何優化這些參數也成了眾多研究者研究熱點。用數值模擬的方法在再生溫度50℃-150℃的圍內對轉輪轉速和面積比(Ar/Ap)進行了研究,并研究了這些參數對等溫線依賴性。此外,干燥劑除濕主要技術核心在于干燥劑材料的選擇。目前對干燥劑材料的研究十分活躍,研究方向主要是尋找接近理想吸附性能的吸附劑材料,其中在原有多孔吸附劑中添加其它成分形成高性能的復合吸附劑也是研究人員努力的方向。

  對硅膠-氯化鋰復合干燥劑強化吸濕機理及其應用進行了研究,研制出復合干燥劑并解決了復合干燥劑的液解問題。實驗結果表明復合干燥劑轉輪的除濕量比硅膠轉輪平均要高50%。尤其在相對濕度較低時,除濕量更高;轉速、再生溫度和處理空氣進口相對濕度對除濕轉輪的性能影響比較顯著。

  針對傳統的加熱再生方法不僅能耗大,而且能量損失嚴重,從而限制了一些吸濕性能高、經濟性好的固體除濕劑(如硅膠)在除濕空調系統中應用的問題,姚曄提出一種超聲波再生技術,從理論上探討固體除濕劑超聲波再生的可行性,并進行實驗驗證.結果表明,利用超聲波進行固體除濕劑再生是完全可行的.超聲波再生有望降低固體除濕劑的再生溫度。

  為了避免單獨的除濕系統的弊端,復合系統也成為研究的一個方向。復合系統結合了吸附劑除濕器與傳統的冷卻系統,這樣除濕裝置用來處理濕空氣的潛熱,傳統的冷卻系統處理空氣的顯熱。因此,復合系統可以實現對空氣的溫度和濕度單獨控制,同時具有節能、體積小等特點。但是復合系統的搭建過程相對復雜,初投資比較大。與R407C壓縮式空調系統相結合的固定床除濕系統。實驗研究了再生溫度、干燥劑質量、空氣質量流速、除濕床中抽屜數量及其尺寸對系統COP的影響,結果表明與固體除濕的結合的空調復合系統的壓縮機耗電量減少了10.2%。

  比較了許多以天然氣為燃料的內燃機驅動的轉輪熱泵系統的經濟性。內燃機的廢熱用于提供一部分再生轉輪所需要的能量。選取了美國的8個城市,其氣候特點包括高溫高濕、高溫干燥以及溫濕度適中的,數學模型的結果表明在所有的這些條件下,這些系統的運行成本都低于電驅動的熱泵系統。提出了聯合發電冷卻循環,在這個循環中利用太陽能驅動的Rankine循環產生電能,同時系統中利用冷卻器產生的熱量進行轉輪的再生。將此系統用于一個代表性的建筑中,結果表明比起傳統的HVAC系統,此新系統的能量消耗減小了12%。由干燥單元和燃氣驅動冷卻器組成的復合系統。干燥單元由再生除濕器、換熱器、蒸發冷卻器、熱管和風機組成,干燥單元提供全部的潛熱和部分顯熱。冷卻器提供剩余的顯熱。

  發現系統的能量消耗可以減半,平均回收期在兩年左右。這就說明一旦此系統中的干燥單元在商業上容易獲得,這種系統與傳統的系統相比將會有明顯的競爭性。研究了一個干燥除濕子系統與蒸氣壓縮系統相結合的復合系統的性能。系統中利用平行通道的除濕轉輪。結果表明,增加了附加的除濕子系統,燃氣COP提高了40%同時制冷量提高了50%。

  一種新型的干燥制冷方式,系統被稱為DESRAD系統,系統采取被動的冷卻方式。在熱濕季節,利用固定在屋頂上的干燥吸附床提供所需要的潛熱和顯熱。白天,利用家用材料存儲濕度和熱量的能力處理室內空氣,傳統空調系統作為備用設備。干燥劑吸附床用于在夜間對室內的空氣進行除濕處理。

  干燥劑除濕器的傳熱和傳質過程是相互耦合的,傳熱和傳質相互交織,相互影響。對濕空氣而言,熱對流、熱傳導和質量對流、分子擴散同時存在,相互影響;對干燥劑而言,目前尚缺乏在多孔介質中分子擴散的一些物性數據。而干燥劑材料對濕空氣中對水蒸汽的吸附本身就是一個非平衡的動態吸附過程,在不同的溫濕度、壓力和空氣流速下,干燥劑材料具有不同的平衡吸附量和動態吸附力;目前在理論上也尚無統一的動態的以及平衡的吸附方程,在實驗上尚缺乏干燥劑材料在一些工況下的動態吸附數據或實驗關聯式。

  D.Charoensupaya等(1988)利用一個假設的等溫吸附方程建立了一維的傳熱傳質模型,對干燥除濕系統進行了參數分析。R.K.Collier等(1991)通過對除濕轉輪傳熱傳質過程中“熱波”和“濃度波”的分析,指出為使系統的整體性能******應該進行“分級再生”,同時增加轉輪中的惰性熱容。J.Y.San(1993)對交叉流除濕裝置的傳熱傳質過程建立了二維的數學模型,分析了傳熱單元數NTU、畢渥數Bi等因素對系統性能的影響。W.Zheng等(1993,1995)用隱式的有限差分方法對除濕轉輪的一維的傳熱傳質過程進行了數值模擬,分析了轉輪轉速等因素對系統性能的影響。P.Majumdar(1998)對復合干燥劑孔隙結構內的傳熱傳質進行了研究,該模型綜合考慮了氣側熱阻和固側熱阻對傳熱傳質的影響。

  G.R.Thorpe(1998)用數值方法詳細分析了用于谷物干燥的硅膠堆積床的傳熱傳質過程,該模型應用Newton-Raphson方法對硅膠表面空氣的含濕量Yw進行迭代求解。Y.J.Dai等(2001)通過數值計算用參數分析的方法對除濕轉輪的性能進行了詳細的分析和討論。J.L.Niu等(2002)通過對一個二維數學模型的數值求解,討論了干燥劑厚度對除濕轉輪傳熱傳質的影響,指出對于干燥劑而言在某一轉速下只有一定厚度的活性層才參加傳熱傳質活動。劉曉茹等通過二維動態數學模型分析內冷卻緊湊式除濕器傳熱傳質過程,計算時采用全隱式有限差分格式對方程組進行離散,對流項采用一階迎風格式并利用牛頓迭代法求取各種所需參數的數值解。

  概括來說,目前大量的研究主要集中于如何提高干燥劑除濕系統的熱力性能系數COP和除濕性能方面。事實上,吸附熱是制約系統性能的主要因素之一,除濕空調系統在動態除濕時,由于吸附熱的釋放使除濕劑的溫度升高而大大降低吸濕能力,很難實現理想的等溫除濕過程,導致整個傳熱傳質過程的不可逆損失較大,驅動系統的再生溫度較高。

  雖然研究者對解決吸附熱問題做了較多的研究和提出一些辦法,但是到目前為止,吸附熱問題仍未得到很好的解決,本文就以此問題作為主要的研討對象,旨在通過大量研究找到行之有效的解決辦法。

  

聲明:本站部分內容和圖片來源于互聯網,經本站整理和編輯,版權歸原作者所有,本站轉載出于傳遞更多信息、交流和學習之目的,不做商用不擁有所有權,不承擔相關法律責任。若有來源標注存在錯誤或侵犯到您的權益,煩請告知網站管理員,將于第一時間整改處理。管理員郵箱:y569#qq.com(#轉@)
本文標簽:除濕
在線客服
聯系方式

熱線電話

133-6050-3273

上班時間

周一到周五

公司電話

133-6050-3273

微信二維碼
国产日韩欧美在线看_亚洲精品婷婷_日本一区二区三区四区在线视频_51午夜精品国产
国产91丝袜在线播放0| 日韩欧美二区三区| 亚洲第一主播视频| 欧美在线免费播放| 午夜精品久久久久久久久久久| 欧美日韩国产a| 日韩高清不卡一区二区三区| 欧美一级片在线看| 精品在线播放免费| 欧美激情一二三区| 91麻豆国产自产在线观看| 亚洲综合免费观看高清完整版| 欧美日韩亚洲综合| 蜜臀a∨国产成人精品| 久久综合久久久久88| 成人av资源在线| 亚洲国产精品久久久男人的天堂| 9191成人精品久久| 激情综合色综合久久综合| 欧美韩国日本不卡| 欧美综合天天夜夜久久| 免费日本视频一区| 国产欧美精品日韩区二区麻豆天美| 99re这里只有精品6| 午夜日韩在线观看| 久久―日本道色综合久久| 成人高清免费在线播放| 亚洲大片在线观看| 精品成人一区二区三区四区| 菠萝蜜视频在线观看一区| 亚洲一区二区三区中文字幕| 日韩精品中午字幕| 9i在线看片成人免费| 偷窥少妇高潮呻吟av久久免费| 久久男人中文字幕资源站| 91在线视频18| 蜜臀久久久99精品久久久久久| 国产亚洲欧美激情| 欧美特级限制片免费在线观看| 激情av综合网| 亚洲另类中文字| 日韩免费看的电影| 97久久久精品综合88久久| 日韩av中文在线观看| 国产欧美视频一区二区三区| 欧美日韩亚洲综合在线| 国产成人一级电影| 亚洲v日本v欧美v久久精品| 久久无码av三级| 欧美吻胸吃奶大尺度电影| 国产在线精品国自产拍免费| 一区二区免费看| 久久精品水蜜桃av综合天堂| 欧美日韩精品欧美日韩精品一| 国产精品自在在线| 五月婷婷久久综合| 国产精品精品国产色婷婷| 日韩一卡二卡三卡四卡| 色婷婷亚洲一区二区三区| 国产一区二区0| 石原莉奈在线亚洲二区| 国产精品麻豆欧美日韩ww| 欧美一区二区精美| 色婷婷亚洲精品| 国产福利一区二区三区视频在线 | 国产电影精品久久禁18| 亚洲成国产人片在线观看| 国产精品天天看| 日韩一区二区三区视频在线 | 精品不卡在线视频| 欧美日韩国产小视频在线观看| 成人av在线网站| 久久精工是国产品牌吗| 亚洲图片欧美色图| 国产精品高潮呻吟| 久久免费美女视频| 欧美一级二级在线观看| 欧美又粗又大又爽| 成人av在线资源网站| 国模一区二区三区白浆 | 亚洲一区av在线| 国产精品久久久久婷婷| 精品久久久久久久久久久院品网| 欧美日韩精品欧美日韩精品一综合 | 亚洲777理论| 亚洲欧美aⅴ...| 国产精品青草综合久久久久99| 精品成人私密视频| 日韩一区二区三区四区五区六区| 欧美少妇xxx| 色婷婷久久99综合精品jk白丝| 成人一区二区视频| 国产老女人精品毛片久久| 美国十次了思思久久精品导航| 五月天一区二区三区| 亚洲精品乱码久久久久| 《视频一区视频二区| 中文在线资源观看网站视频免费不卡| 精品播放一区二区| 精品免费一区二区三区| 国产精品伦一区| 欧美国产日韩在线观看| 国产亚洲一区字幕| 久久久久亚洲综合| 久久在线免费观看| 久久综合久久综合久久综合| 精品国产伦一区二区三区观看体验| 91麻豆精品国产91久久久久久久久| 欧美日韩在线播放| 欧美三级韩国三级日本三斤| 欧美在线观看视频一区二区| 欧美在线观看一区二区| 欧美在线制服丝袜| 欧美视频一区二区| 欧美日韩www| 555夜色666亚洲国产免| 69p69国产精品| 日韩欧美国产高清| 精品美女一区二区| 久久久国产精品麻豆| 久久久久国产精品人| 国产日韩欧美精品综合| 国产精品拍天天在线| 国产精品久久久久久久久免费丝袜 | 亚洲精品国产视频| 一区二区三区.www| 午夜伦欧美伦电影理论片| 日韩精品一区第一页| 日本在线不卡视频| 久久99精品国产麻豆婷婷洗澡| 黄网站免费久久| 国产精品综合久久| jiyouzz国产精品久久| 一本到不卡精品视频在线观看| 欧美午夜免费电影| 91精品国产入口| 亚洲精品在线免费观看视频| 日本一区二区三级电影在线观看| 国产精品电影一区二区| 一区二区三区精品在线观看| 午夜久久久影院| 激情深爱一区二区| 懂色av噜噜一区二区三区av| 色综合久久综合| 6080yy午夜一二三区久久| 精品国产乱码久久久久久图片| 国产日韩欧美麻豆| 一区二区在线观看视频| 婷婷亚洲久悠悠色悠在线播放| 美女视频一区在线观看| 国产馆精品极品| 色美美综合视频| 欧美高清视频不卡网| 久久亚洲综合色| 亚洲欧美日韩人成在线播放| 婷婷久久综合九色综合伊人色| 六月丁香综合在线视频| 国产91丝袜在线18| 国产一区二区看久久| 国产亚洲成aⅴ人片在线观看| 久久久久久久久久久久久夜| 中文字幕成人av| 亚洲综合av网| 日韩av网站在线观看| 成人精品免费视频| 91在线观看成人| 国产成人免费视频精品含羞草妖精| 972aa.com艺术欧美| 91精品国产综合久久久久久久久久| 久久一夜天堂av一区二区三区| 18成人在线视频| 免费观看30秒视频久久| 成人午夜在线播放| 欧美福利视频一区| 欧美激情一区二区| 天使萌一区二区三区免费观看| 国产福利一区在线观看| 欧美体内she精高潮| 久久久久一区二区三区四区| 夜夜嗨av一区二区三区中文字幕| 久久99国产精品麻豆| 91免费看视频| 欧美精品一区二区三区蜜桃视频| 亚洲欧美另类综合偷拍| 精品一区二区三区视频在线观看| 一本一道综合狠狠老| 精品日韩一区二区三区| 一区二区三区在线播| 国产精品一二三四| 欧美人与性动xxxx| 国产精品久久三区| 美女视频黄久久| 色欧美日韩亚洲| 久久久久久久网| 日韩综合小视频| 91老司机福利 在线| 精品国产91亚洲一区二区三区婷婷| 亚洲精品第一国产综合野| 国产一区二区成人久久免费影院| 欧美日高清视频|